Weighted Clustering and Evolutionary Analysis of Hybrid Attributes Data Streams
نویسنده
چکیده
It presents some definitions of projected cluster and projected cluster group on hybrid attributes after having given some definitions on ordered attributes and sorted attributes to solve clustering analysis problem of infinite hybrid attributes data streams in finite space. In order to improve the clustering quality of hybrid attributes data streams, it presents a two-step projected clustering method, which can often make better clustering effects in two simulated experiments although it is very simple. At last, it gives a dividing and merging framework of infinite hybrid attributes data streams. In order to implement this framework, it presents 8 properties in Section IV, some data structure definitions and 15 algorithms in appendix. The framework is verified and these algorithms are tested by German data set with a better clustering quality than WKMeans sometimes if having set right parameters.
منابع مشابه
A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملGROUND MOTION CLUSTERING BY A HYBRID K-MEANS AND COLLIDING BODIES OPTIMIZATION
Stochastic nature of earthquake has raised a challenge for engineers to choose which record for their analyses. Clustering is offered as a solution for such a data mining problem to automatically distinguish between ground motion records based on similarities in the corresponding seismic attributes. The present work formulates an optimization problem to seek for the best clustering measures. In...
متن کاملA Graph Based Clustering Method using a Hybrid Evolutionary Algorithm
Clustering of data items is one of the important applications of graph partitioning using a graph model. The pairwise similarities between all data items form the adjacency matrix of a weighted graph that contains all the necessary information for clustering. In this paper we propose a novel hybrid-evolutionary algorithm based on graph partitioning approach for data clustering. The algorithm is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 3 شماره
صفحات -
تاریخ انتشار 2008